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This work explores capillary flow through micropillar arrays with rectangular pillar arrangements. The
effects of these configurations on permeability and capillary pressure are investigated for heat pipe wick
applications. The permeability is described in terms of three dimensionless parameters: h=d; l=d, and S=d,
where l and S are the edge-to-edge spacings in the x- and y-directions, respectively. The two analytical
permeability models considered are Hale et al. (2014) [20] and the Brinkman equation using specifically
the permeability derived by Tamayol and Bahrami (2009) [19]. Permeability results from numerical
simulations are also presented. The surface energy minimization program called Surface Evolver is used
to calculate the capillary pressure within the arrays. Mass flow rates are first derived from a combination
of array permeability and capillary pressure, and then used to predict the capillary limit of heat pipes
equipped with these wicks. Rectangular arrays exhibited the ability to maintain high capillary pressures
even at high porosities, which increased the overall cooling capacity above square arrays. The increase
was on the order of 1.5� in the absence of gravity and 5�–7� in the presence of gravity, depending
on the exact h=d ratio considered.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Microscale pillar arrays are rapidly gaining popularity due to
their wide range of potential applications. Lab-on-a-chip systems
are an intensely explored area and have used pillar arrays for
high-performance liquid chromatography [1,2], dielectrophoresis
[3], and isolating cancer cells [4,5]. Another area of interest is ther-
mal management [6–10], and this work is specifically interested in
the use of micropillar arrays in heat pipes. Heat pipes are cooling
devices that utilize passive capillary fluid flow through internal
wicking structures in a closed system to remove heat via a phase
change process. Heat pipes are often limited by the capillary limit,
where the capillary pressure in the internal wick can not overcome
the resistance to flow through the wick. Thus, one of the key
parameters of interest for heat pipes is the size and design of the
wick pores. Small pore radii result in a large driving capillary pres-
sure but decrease permeability. For micropillars to be considered
as an effective wicking material, the ability to accurately predict
the maximum mass flow rate through pillar arrays based on the
pillar design is crucial.
The majority of modeling work has been performed for square
and hexagonal arrays. Sangani and Acrivos [11], Drummond and
Tahir [12], and Gebart [13] studied the permeability of square
and hexagonal cylinder arrays over different porosity regimes.
Yazdchi et al. [14] summarized the cylinder array permeability
models available at the time and compared them to finite element
simulations. Xiao and Wang [15], Byon and Kim [16] used the
Brinkman equation for flow through porous media to find square
pillar array permeability. Srivastava et al. [17] and Ranjan et al.
[18] used numerical simulations to model flow through a square
pillar array and derive correlations for the permeability as a func-
tion of dimensionless geometric parameters. Tamayol and Bahrami
[19] used a cell approach to develop an analytical equation for the
permeability of long fibers, not pillars, with independent x- and
y-direction fiber spacings. Hale et al. [20] analytically modeled
actual pillars as opposed to long cylinders, where once again the
x- and y-direction pillar spacings were independent, but they did
not thoroughly explore the effects of these rectangular configura-
tions on permeability.

Along with permeability, determining the velocity through a
pillar array requires knowledge of the driving pressure. Some
microfluidic applications require fluid to move as a liquid propaga-
tion front, resulting in capillary pressures that relate to surface
energies and dynamic meniscus shapes [15,21,22]. However,
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Nomenclature

a aspect ratio for dimensionless velocity model, h=weff

Ac cross-sectional wick area (m2)
d pillar diameter (m)
g acceleration of gravity (m2/s)
h pillar height (m)
hvap heat of vaporization (j/g)
K pillar array permeability (m)
K� dimensionless pillar array permeability, K/d2

K�B dimensionless pillar array permeability using Brinkman
equation

K�T;cyl dimensionless pillar array permeability using [19]
Kcyl 2-D cylinder bank permeability
l pillar spacing in x-direction, center to center (m)
Lwick macroscopic wick length (m)
P pressure (Pa)
Pl liquid pressure (Pa)
Pv vapor pressure (Pa)
DP�cap dimensionless capillary pressure, DPcap=ðr=dÞ
DP�total dimensionless total liquid pressure drop in model heat

pipe
DPcap capillary pressure across vapor–liquid interface (Pa)
DPgrav gravitational pressure drop in heat pipe (Pa)
DPliquid liquid phase pressure drop as liquid travels through

pillar array (Pa)
DPvapor vapor phase pressure drop as vapor travels through heat

pipe (Pa)
_Q heat transfer rate (W)

S pillar spacing in y-direction, center to center (m)
s pillar spacing in y-direction, edge to edge (m)
U superificial fluid velocity through array (m/s) followed

by cooling capacity:
u x-velocity (m/s)
U� dimensionless superifical velocity
�u dimensionless x-velocity
�ub dimensionless velocity profile with respect to �z located

at edges of unit cell �y ¼ 1 and �y ¼ 0
�uavg dimensionless superficial velocity through a pillar unit

cell
�umax maximum dimensionless velocity at edges of liquid sur-

face, located at �x ¼ 0:5; �y ¼ 0, and �y ¼ 1
W macroscopic wick width (m)
w pillar spacing in x-direction, edge to edge (m)
weff effective width available for flow (m)
�y dimensionless y-position, y=l
�z dimensionless z-position, z=h

Symbols
b wick angle relative to ground
� porosity
l fluid viscosity (Pa s)
q liquid density (kg/m3)
r surface tension (N/m)
h liquid–solid contact angle

Fig. 1. Micropillar unit cell with geometric parameters. Fluid flow is in the
x-direction.
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continuous flow technologies such as heat pipes have capillary
pressures that rely primarily on the effects of pillar geometry on
meniscus shape [6,18,23]. Since rectangular pillar arrangements
will create multiple surface radii of curvature, analytical calcula-
tions of the effective radius are often inaccurate to predict the cap-
illary pressure [8]. Therefore, capillary pressures for rectangular
pillar spacings have been calculated by the surface energy minimi-
zation program called Surface Evolver [24], similar to the methods
used by Xiao et al. [22]. This study seeks to optimize the effects of
independent pillar spacings on array permeability, capillary pres-
sure, and subsequent superficial velocity.

2. Permeability models

The geometry of the pillar array is defined in Fig. 1, where the
pillars are of diameter d, height h, edge-to-edge distance in the
y-direction w, and edge-to-edge distance in the x-direction s
(Fig. 1). Additionally, we define the center-to-center distances as
l ¼ wþ d and S ¼ sþ d. A few recent studies have included the
effects of meniscus shape on permeability [15,16,22], but the liquid
interface at h was kept flat in this study for simplicity. The porosity
of the array is given:

� ¼ 1� p
4

d
l

� �
d
S

� �
: ð1Þ

If the pressure gradient is constant and applied only in the
x-direction, then fluid flow occurs primarily in the x-direction in
line with the gradient. The Darcy fluid flow relates superficial
velocity U to the pressure gradient by

U ¼ � dP
dx

K
l
; ð2Þ

where l is the fluid viscosity and K is the array permeability. Per-
meability is commonly non-dimensionalized by the pillar diameter,
so we define K� ¼ K=d2. Three separate methods of determining the
permeability will be compared: the Brinkman equation using the
permeability proposed by Tamayol and Bahrami [19], the analytical
solution by Hale et al. [20], and numerical simulations.

2.1. Brinkman equation with cylinder array permeability solution by
Tamayol and Bahrami [19]

The Brinkman equation is a modified form of the Navier–Stokes
equation that is applicable to porous media flow. The Brinkman
equation is a popular method to calculate the permeability through
pillar arrays [22,25]. However, it requires knowledge of the 2-D per-
meability of a cylinder array without a bounding surface (Kcyl). This
presents a challenge for rectangular geometries, since the majority
of researchers have studied only square or hexagonal arrays. The
governing equation is

l
�

d2u

dz2 �
dP
dx
� l

Kcyl
u ¼ 0; ð3Þ
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where Kcyl is generally selected from literature. Solving Eq. (3) for
the fluid velocity leads to an expression for the overall permeability.
The final result is directly presented here for simplicity, but a
detailed derivation can be found in Xiao et al. [22]:

K�B ¼ K�cyl � K�cyl

� �3=2 d
h
ffiffiffi
�
p tanh

h
ffiffiffi
�
p

d
ffiffiffiffiffiffiffiffi
K�cyl

q
0
B@

1
CA: ð4Þ

For this study, the cylinder bank permeability must accomodate
rectangular configurations. Tamayol and Bahrami [19] presented a
simple analytical model for the permeability of a non-square cylin-
der bank. They assumed a parabolic velocity profile for flow in
fibrous porous media with velocity varying only in the y-direction,
since the system did not include a bounding surface. The velocity at
the unit cell boundary (y ¼ 0 and y ¼ l) varied linearly from zero at
the pillar surface to a maximum value in the middle of the cell; the
maximum value depended linearly upon cell porosity. The resulting
equation for dimensionless permeability was

K�T; cyl ¼
12d3

ðl2 � d2ÞS
þ

18d4l2 arctan dffiffiffiffiffiffiffiffiffi
l2�d2
p
� �

þ p=2
� �

ðl2 � d2Þ
5=2

S

8>><
>>:
þ12ðS� dÞd2

l2S

2� gð�Þ
2

� �)�1

; ð5Þ

gð�Þ ¼ 1:274�� 0:274: ð6Þ

Using Eq. (5) as K�cyl in Eq. (4) gives the total permeability of a micro-
pillar array according to the Brinkman model.

2.2. [20] solution

As an alternate to the Brinkman equation, Hale et al. [20] proposed
an analytical model that accounts for velocity variations in both the
y- and z- directions simultaneously. The model is presented here
briefly, but additional details of the derivation can be found in the ref-
erence source [20]. For a unit cell, the section without pillars was
called section A, and the section with pillars was called section B.
Continuity was maintained by assuming a constant superficial veloc-
ity through both sections. The governing equation for the system was

dP
dx
¼ l @2u

@y2 þ
@2u
@z2

 !
; ð7Þ

which required a finite Fourier transform solution. Non-dimension-
alizing the parameters gave

�z ¼ z=h; �y ¼ y=l; �u ¼ u

� dP
dx

h2

2l

; a ¼ h=weff ; ð8Þ

where weff is the effective width available for flow. Using the appro-
priate no-slip and free shear boundary conditions in the z-direction,
the solution to Eq. (7) was

�u¼
X1
n¼0

sinðkn�zÞ 4�ub�4
k3

n

 !
sinhkn

a
�yþsinhkn

a ð1��yÞ
sinh kn

a

 !
þ 4

k3
n

( )
; ð9Þ

where kn ¼ ðnþ 1=2Þp and where �ub is the velocity profile at �y ¼ 0
and �y ¼ 1. For section A:

�ub ¼ 4�umaxð�x� �x2Þð2�z� �z2Þ; ð10Þ

�umax¼
0 for S=d<4:5;

�0:00238 S
d

	 
2þ0:119 S
d�0:487 for 4:56 S=d625;

1 for S=d>25:

8><
>: ð11Þ
For section B, �ub ¼ 0. Integrating Eq. (9) and dividing by the area
gave an average superficial velocity, �uavg , such as could be used in
Eq. (2). Then, integrating Eq. (2) with respect to x gave the pressure
drop. With rearrangement, the final permeability of the system is
given:

K�Hale ¼
2
S

d
h

� �2 Z sþd

d

1
�uavg

dxþ

R d
2
�d
2

1
�uavg weff

dx

1
2

h
d

	 
2 S
l

2
64

3
75
�1

: ð12Þ

The first term in Eq. (12) represents section A, and the second
term represents section B. This equation offers a semi-analytical
solution that is independent in x- and y-direction pillar spacing
and applicable to a wide range of porosities.
2.3. Numerical simulations

Numerical simulations can provide the accuracy that analytical
models often lack, but usually at the expense of speed. In this
study, COMSOL Multiphysics [26] software calculated the 3-D
solution for laminar flow through pillar arrays. Fig. 2 shows a sche-
matic of a single unit cell and corresponding boundary conditions.
A no-slip condition was applied on the bottom surface and pillar
walls, and the top surface had a symmetry boundary condition to
reflect a shear-free air–water interface. Periodic flow conditions
were imposed on the surfaces at y ¼ 0 and y ¼ l. Finally, the pres-
sures at the inlet and outlet were both specified. The mesh param-
eters were set to the ‘‘normal’’ level in COMSOL, which refers to a
specific refinement level of the physics-controlled meshing tech-
niques built into the software. The solutions from this mesh com-
pared to the ‘‘fine’’ mesh level were not significantly different, so
the solution was considered to be independent from the mesh size.
To eliminate entrance and exit effects, we simulated an array ten
cells long. The pressure and superficial velocity were measured
at equal increments to derive individual permeabilities for each
of the 10 cells. The permeabilities of the center eight cells were
averaged to give the final permeability with < 1% uncertainty on
the average. Simulations were performed over the parameter range
0:5 6 h=d 6 10;1:1 6 S=d 6 10, and 1:1 6 l=d 6 15.
2.4. Permeability model comparisons

Fig. 3 compares K�B and K�Hale with COMSOL results for high and
low values of S=d. Both analytical models exhibit the correct phys-
ical behavior, and the accuracy of the models does not change sig-
nificantly over a wide range of S=d values. K�Hale exhibits superior
accuracy over the Brinkman equation at low h=d values due to the
more complex nature of the velocity profile near the bottom bound-
ing surface, which the Brinkman solution does not account for.
Additionally, the Brinkman equation is affected by the accuracy of
the permeability term by Tamayol and Bahrami [19]. For short
Fig. 2. Schematic of COMSOL simulation conditions.



Fig. 3. Dimensionless permeability of Brinkman equation (dashed line), Hale et al. model (solid line), and COMSOL results (diamond points).

Fig. 5. Surface plot of COMSOL permeability results with h=d = 2.
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pillars, the permeability becomes constant at high l=d because the
system approaches the solution for flow over a flat plate. For tall pil-
lars, the solution approaches that of an infinite cylinder bank. The
absolute value of permeability also rises with h=d, since the friction
effects of the bottom surface become less pronounced.

To further explore the effects of independent pillar spacing on
permeability, Fig. 4 shows COMSOL results for rectangular arrays
with several different S=d ratios compared to the results for a square
array. Fig. 4 specifically uses h=d ¼ 2, but the trends are the same for
other h=d values. At a given l=d, higher values of S=d result in higher
permeabilities. This is because the flow is less restricted and devel-
ops more closely to a uniform profile between pillar rows. Finally, K�

is more strongly dependent on l=d than S=d, since the flow moves
primarily in the x-direction, and l=d controls the area available for
flow in that direction.

Fig. 5 is a surface plot of permeability vs. l=d and S=d that iden-
tifies that the maximum permeability, occurs at the highest S=d
and l=d possible. However, permeability is not the only factor in
determining fluid velocity through a micropillar array. As the next
section will show, capillary pressure plays a significant role as well
and will point to a different set of geometric parameters as the
optimal combination.
3. Capillary pressure

The capillary pressure generated by a heat pipe wick is the driv-
ing force behind fluid flow. In a heat pipe, the capillary pressure at a
Fig. 4. COMSOL permeability results for various S=d ratios and h=d = 2.
given point must be greater than the sum of the pressure drops
throughout the pipe from the condenser (where the capillary pres-
sure is assumed to be zero) up to that point [27]. Heat pipe wicks
are typically designed to handle the largest pressure difference that
will occur, so the difference in capillary pressure between the evap-
orator and condenser must balance the total liquid, vapor, and grav-
itational pressure drops. This relationship can be expressed

DPcap P DPliquid þ DPvapor þ DPgrav : ð13Þ

In many heat pipes, the vapor pressure drop is negligible com-
pared to the liquid and gravitational pressure drops. Therefore, the
following analysis assumes that DPvapor can be neglected. However,
in certain geometric configurations, the vapor pressure drop may
become significant. Peterson [23] and similar resources contain
thorough analytical expressions for vapor pressure drop in heat
pipes, so this assumption can easily be tested by calculating
DPvapor for a specific design of interest. If DPvapor is significant, then
the capillary pressure must balance all three terms in Eq. (13)
instead of the two that are used in this analysis.

The capillary pressure difference over a vapor–liquid interface
is

DPcap ¼ Pv � Pl ¼ r 1
R1
þ 1

R2

� �
; ð14Þ



Fig. 7. Dimensionless capillary pressure vs. l=d for several S=d values, predicted by
Eq. (17) with h ¼ 0� .
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where Pv is the vapor pressure, Pl is the liquid pressure, r is the
liquid/vapor surface tension, and R1 and R2 are the principle radii
of curvature of the liquid meniscus [23]. The non-dimensional pres-
sure is now defined as:

DP�cap ¼
DPcap

r=d
: ð15Þ

Traditional wicking materials have capillary pressures that are
inversely related to the effective pore radius and linearly related
to the consine of the contact angle of the liquid with the wicking
surface, cos h [23]. Thus, we expect the pressure within rectangular
pillar arrays to also be linearly dependent on cos h and a function of
pillar spacing. Hale et al. [20] proposed the following equation for
the capillary pressure within a micropillar array:

DP�cap ¼ cos h
2d
s
þ 2d

w

� �
: ð16Þ

This equation is only a first-order model. More exact results can
be calculated with Surface Evolver (SE) [24], which is a program
that minimizes the surface energy of a given system. For a given
solid pillar geometry, SE evolves the liquid surface from a flat inter-
face towards the configuration that will result in the minimum sys-
tem energy. This project used Surface Evolver (SE) to calculate the
capillary pressure generated by different pillar configurations. For
more methodology details, please refer to Ranjan et al. [18]. Simu-
lations were performed over pillar spacing ranges 1:1 6 l=d 6 3
and 1:1 6 S=d 6 3, and for contact angles of 0:1� 6 h 6 60�. The pil-
lar height was kept large to eliminate the dependence of the pres-
sure on height. Fig. 6 shows the results of the simulations. The
capillary pressure was expected to be linearly dependent on the
cosine of the contact angle, and indeed it was. However, the capil-
lary pressure depended only on porosity. This result contradicts
the model given by Eq. (16), which predicted that the pressure
depended on individual l=d and S=d spacings. Assuming a linear
dependence on cos h, the capillary pressure results from SE were
empircally fit for the dependence on �, giving

DP�cap ¼ ð26:84�� 58:51�0:5 þ 31:82Þ cos h: ð17Þ

This capillary pressure was also significantly lower than the values
predicted by Eq. (16). This was because Eq. (16) assumed that the
liquid contact line was pinned at the top pillar edge, but SE showed
that the curvature was actually much less severe. To determine the
relative benefits of using a rectangular and square geometries, Fig. 7
compares non-dimensional capillary pressure for different S=d spac-
ings with a square array. The highest capillary pressure occurs when
both S=d and l=d are small; however, small l=d values are detrimental
to permeability and thus not feasible. As l=d increases, Fig. 7 demon-
strates that keeping S=d small provides gains over the traditional
square approach, where S=d and l=d increase simultaneously.

When the wick is oriented horizontally such that the fluid flow
is parallel to the ground, Eq. (17) accurately represents the driving
Fig. 6. Dimensionless capillary pressure for square and rectangular unit cells
calculated by Surface Evolver.
pressure. However, if the wick is oriented at an angle, gravitational
effects become important. The capillary pressure acts to pull fluid
towards the evaporator regardless of orientation, but gravity acts
to pull the fluid towards the ground. The dimensionless gravita-
tional pressure drop through the wick is

DP�grav ¼
qg
r

dLwick sin b; ð18Þ

where q is the fluid density, g is the acceleration of gravity, Lwick is
the total wick length, and b is the angle of the wick relative to the
ground. For a vertical wick, b ¼ 90�. This gravity term represents
the balance between capillary forces and gravity, similar to the
Bond number. Combining Eqs. (17) and (18) gives the total driving
pressure in the wick. As the wick becomes long, the effects of grav-
ity begin to overcome the driving abilities of the capillary pressure,
and the resulting velocity through the wick decreases. Since the
dimensional form of Eq. (18) depends directly on pillar diameter
and wick length, the exact point at which this occurs depends on
the physical parameters of the system.
4. Velocity optimization

The cooling capacity of heat pipes is related to the maximum
liquid velocity through the internal wick, which dictates the capil-
lary limit. We are interested in comparing wicks on the basis of
their best-case scenario even though heat pipes do not always
operate at full capacity. The contact angle must be low enough
for the liquid to wet the surface of the pillars (a threshold explored
by Priest et al. [28], and maximum fluid flow through the wick is
achieved when the liquid completely wets the wick (h ¼ 0).
Dimensionless velocity can be calculated:

U� ¼ K�DP�total; ð19Þ

where DP�total ¼ DP�cap � P�grav . A geometric parameter sweep deter-
mines where the maximum velocity occurs. The results are shown
in Figs. 8 and 9. Fig. 8 is a surface plot of U� vs. S=d and l=d for
h=d ¼ 2. Fig. 9 shows one example of the effects of gravity on the
velocity, where h=d ¼ 2 and S=d ¼ 1:1. At low values of l=d, the
velocity is small due to low permeability. As l=d increases, the per-
meability rises and causes the velocity to increase as well. However,
at high values of l=d, the loss in capillary pressure overrules the gains
in permeability, so the velocity peaks and then begins to decrease
again. The optimal operating condition is at the peak location.
Fig. 8 shows the strong effects of S=d on the velocity. The velocity
is highest at small values of S=d, decreasing sharply and then leveling
off as S=d increases. This behavior occurs because the capillary pres-
sure becomes highly sensitive to pillar spacing at small values of
porosity. Therefore, it is clear that smaller values of S=d are beneficial
even though it causes the permeability to decrease. Fig. 9 incorpo-
rates gravity. Gravitational effects decrease overall velocity and



Fig. 8. U� vs. l=d and S=d for h=d ¼ 2, no gravity.

Fig. 9. U� vs. l=d and DP�grav for h=d ¼ 2 and S=d ¼ 1:1.

Fig. 10. U� vs. h=d and l=d, with S=d ¼ 1:1. DP�grav ¼ 0 (top) and DP�grav ¼ 0:2
(bottom).
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cause the inflection point to occur at lower l=d values because the
total driving pressure of the system is decreased, meaning that the
tradeoff between pressure and permeability occurs sooner. As a side
note, if vapor pressure losses are also a significant factor, then the
pressure available to drive liquid flow would decrease even further.

To explore the effects of h=d on the velocity, Fig. 10 shows surface
plots of U� vs. l=d and h=d, both with and without gravity effects
(S=d ¼ 1:1). Fig. 10 demonstrates that higher h=d values result in
higher velocities because the friction effects of the bottom surface
become less significant at tall pillar heights, so the fluid flow
approaches the solution for flow within a cylinder bank. However,
gravity plays a significant role in the magnitude and inflection
point of the velocity, as was previously seen in Fig. 9. Therefore,
careful consideration of the operating conditions of the system to
be designed is needed to select the l=d that will produce the max-
imum wick performance. The most advantageous combination of
parameters appears to be the highest h=d and lowest S=d possible,
with the appropriate l=d selected based on gravitational effects.
However, there are three other constraining factors to consider
when designing a micropillar wick: manufacturing capabilities,
heat transfer limitations, and the Bond number. High aspect ratio
(h=d) pillars often lack mechanical stability and are labor-intensive
to manufacture out of silicon. However, other materials may prove
more conducive to high aspect ratio pillars. Second, the models
currently assume that the liquid depth matches the pillar height.
At large depths, the thermal resistance increases and heat transfer
rates through the working fluid are adversely affected. Therefore,
the additional effects of heat transfer through the liquid layer
should be balanced with fluid flow considerations when designing
a final heat pipe wick. Finally, the Bond number must be kept
below a value of 1 for the capillary pressure model presented here
to remain valid. Above Bo ¼ 1, the interface shape becomes
affected by gravity and the capillary pressure is no longer the only
driving force for flow. For water, the length scale at which this
occurs is on the order of mm, while micropillars are typically of
the dimension d < 100 lm.
5. Cooling capacity comparison

If the system is modeled with a realistic set of physical parame-
ters, the advantages of a rectangular arrangement are more clearly
seen. Mass flow rate and subsequent cooling capacity can easily be
derived, beginning with Eq. (2). Dimensional velocity is:

U ¼ DP�total

lLwick

r
d

� �
K�d2 ¼ U�d

Lwick

r
l

� �
; ð20Þ

_Q ¼ _mhvap ¼ ðUAcqÞhvap ¼ U�
qr
l

Acd
Lwick

� �
hvap; ð21Þ

where _Q is the heat transfer rate (cooling capacity), Ac ¼ hW is the
superficial cross-sectional wick area, q is the fluid density, and hvap

is the heat of vaporization. In heat pipes, the purpose of increasing
the fluid flow rate through the wick is to raise the maximum heat
transfer capacity of the pipe (i.e. the capillary limit). Table 1 shows
the parameters used in the analysis; the model fluid is water.
Figs. 11 and 12 show the predicted cooling capacity of a rectangular
array with S=d ¼ 1:1 compared to a square array. Two different h=d
ratios are considered, where the diameters are different but the pil-
lar heights are equal. The first ratio of h=d ¼ 2 uses a diameter
d ¼ 75 lm to create a total pillar height h ¼ 150 lm. The second
ratio h=d ¼ 5 uses a diameter d ¼ 30 lm to match the same pillar
height as the previous case. By changing the pillar arrangement
from square to rectangular patterns, the dissipative power abilities
of rectangular wicks increase by as much as 1.5�when the surfaces
are horizontal. The most sigificant effects are seen in the presence of
adverse gravity conditions, where gains of 5�–7� are possible
when the wick is performing entirely against gravity. Capillary



Table 1
Physical system parameters used to calculate cooling capacities.

Parameter Value Description

r 0.066 N/m Liquid–vapor surface tension
q 983.3 kg/m3 Liquid density
l 0.463 � 10�3 N s/m2 Liquid viscosity
hvap 2260 J/g Heat of vaporization
Lwick 0.05 m Macroscopic wick length
W 0.01 m Macroscopic wick width

Fig. 11. _Q vs. l=d for h=d ¼ 2 (top) and h=d ¼ 5 (bottom), no gravitational effects.

Fig. 12. _Q vs. l=d for h=d ¼ 2 (top) and h=d ¼ 5 (bottom), with gravitational effects.

Fig. 13. _Q vs. � for h=d ¼ 2.
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pressure is equally dependent on S=d and l=d, but permeability is
most strongly dependent on l=d spacing. Therefore, rectangular
spacings can achieve both high permeabilities and high capillary
pressures by increasing l=d while maintaining small S=d spacings.
Fig. 13 shows results for h=d ¼ 2 plotted on the basis of porosity
to confirm the fact that these performance advantages are not sim-
ply due to differences in porosity. Square arrays are unable to match
the performance of rectangular arrays, even at the same porosity
values, indicating that the independent arrangement of the pillars
is indeed the causal factor for the improvement.

The previous analysis demonstrates the benefits of rectangular
pillar arrangements for liquid flow that is moving primarily in the
x-direction. For applications where the pressure gradient in the sys-
tem has both x- and y-components, such as heat spreaders, the flow
would have a more significant y-velocity contribution. The optimi-
zation of these systems in terms of S=d and l=d is an interesting area
of exploration, as the permeability would become more equally
dependent on S=d and l=d and potentially suggest more complex
pillar arrangements. Alternatively, traditional hexagonal pillar
arrangements may be more conducive to heat spreading applica-
tions than rectangular arrangements because they are already
designed to move liquid in a diagonal direction.
6. Conclusions

Micropillar arrays have shown promise as wicking materials for
heat pipes, and balancing the tradeoff between permeability and
capillary pressure is key to their design and application. In this
paper we compared two permeability models to numerical simula-
tions to identify a robust model for optimizing pillar dimensions
swiftly. The Brinkman equation and the solution proposed by Hale
et al. [20] both matched well to numerical simulations, with the
Hale et al. [20] model performing more accurately at low h=d ratios
since it accounted for the unique velocity profile at the intersection
of bottom surface and the pillar wall. The permeability depended
more strongly on l=d than S=d, since l=d controls the area available
for flow. Capillary pressure for rectangular arrays was calculated
from interface curvature information derived from Surface Evolver.
The capillary pressure over a static equilibrium surface was only a
function of porosity and contact angle, not individual pillar spac-
ings. Both l=d and S=d control the capillary pressure, but because
of the stronger dependence of permeability on l=d, rectangular pil-
lar arrangements are capable of achieving large permeabilities
with minimal detrimental effects to the capillary pressure. This is
a finding that has not been emphasized in previous literature stud-
ies on micropillar array permeability.

We optimized the wick dimensions for maximum velocity in
heat pipe applications. There was an optimal l=d for a given h=d
and S=d based on the trade-off between viscous losses and capillary
pressure. A parameter sweep along S=d and h=d indicated that the
maximum velocity occured at the smallest S=d and highest h=d
possible. Small values of S=d maintain high capillary pressure val-
ues, while high h=d values diminish the effects of the bottom sur-
face on the viscous losses. A comparison between rectangular and
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square geometries showed that rectangular arrays are capable of
higher velocities and cooling capacities than square arrays. The
exact percentage gain depends upon the physical parameters of
the system, with the largest improvements occuring when the
liquid is flowing against gravity.
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